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In discussing the interrelation between the wide variety of heterogeneous chemical reactions 
and the constant form of conventional kinetic a(t) and c~(t) experimental curves, these curves 
are constructed in terms of 2D Dirichlet tessellations. In mathematical respect the result is the 
possibility to indicate 11 singular points on each curve, providing a more detailed treatment 
of experimental data. In chemical respect this enables one to take the diversity of crystal struc- 
tures and chemical interactions into account. 

1. Geometrical universality vs. chemica l  var ie ty  

One of  the central problems of  the (bulk) heterogeneous chemical kinetics in the- 
oretical respect is the failures in model  discrimination not infrequently occurring 
in the course of  IKP (inverse kinetic problem) solution [1]. When  these failures are 
discussed in the context  of"d iagnos t ic  limits" [2] of  conventional  models, a striking 
contras t  between a wide variety of  heterogeneous reactions and practically always 
sigmoid form of  the experimental  "degree of  conversion a - t i m e  t" curve at tracts  
a t tent ion as one of  the points at issue. This constancy o f  sigmoid form has to a 
degree determined the m o d e m  geometric-probabilistic approach [3-7] to heteroge- 
neous chemical kinetics through giving birth to the idea of  some universal geometri-  
cal regularities of  nuclei format ion and growth. 

The idea of  nuclei was borrowed f rom biology [8] soon after the basic work  of  
Langmui r  [9] had  appeared. Along with this it was noted that  whatever  the chemical 
na ture  of  a reaction, the corresponding kinetic a( t )  curve is practically always sig- 
moid,  i.e. the only type of  kinetic curve corresponding to various types of  chemical 
reactions. (In this respect, c~(t) and c~(t) curves, sketched in fig. 1, m a y  well serve 
as a symbol of  heterogeneous chemical kinetics, or  at least of  the problems of  IKP  
solution, and the final aim of  the present paper is to construct  such curves within 
the suggested approach.)  In addition it appeared that  c~(t) curves obtained for reac- 
tions essentially different in chemical nature  m a y  be quite similar, whereas a( t )  
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Fig. 1. Typical form ofa( t )  and t~(t) curves. 

curves obtained for similar reactions may be quite different [10]. This has led to 
the idea that some universal geometrical regularities of nuclei growth are superim- 
posed on the chemical regularities and mask them, thus determining the shape 
and similarity of c~(t) curves. 

The probabilistic aspect appeared in connection with the necessity to take into 
account the impingement of randomly distributed growing nuclei. This problem 
has been solved in terms of geometrical probabilities by Kolmogorov [11 ] and Mehl 
and Johanson [12] practically at the same time. Later Avrami suggested a combina- 
torial interpretation [13]. These classical works gave birth to the geometric-prob- 
abilistic scheme, on which the experimental data interpretation is based in modern 
heterogeneous chemical kinetics. (Diffusive models are not considered here.) 

To discern the wide chemical variety remaining within the geometric-probabilis- 
tic scheme, the solid reagent must be represented in mathematical models as a 
chemical individual, i.e. with the account of its crystal structure [1]. This necessi- 
tates the restatement of the scheme in terms of tessellations and determines a two- 
dimensional approach [14]. The simultaneous use of two varieties of Dirichlet tes- 
sellations, planigons and random mosaics, enables one to discuss both chemical 
and geometrical aspects of the problem in one and the same mathematical terms 
[15]. In the case ofp 1 symmetry group, when planigons and Wigner-Seitz cells coin- 
cide, this may be done in the following way. 

(i) The nucleus growth is represented with taking into account the chemical indi- 
viduality of a solid reagent in terms of planigons [16,17]. A single crystal face is con- 
sidered as a packing of planigons (fig. 2(a)) and plays the role of a chemical 
individual [15]. An occasional activation of one of the surface centers leads to the 
increase of reactivity of the immediate neighbors, which in this context are the cen- 
ters of action of planigons having common edges with this one. As a result, at the 



A. Korobov / Heterogeneous kinetics: Sigmoid a--t curve 325 

Fig. 2. Two-dimensional heterogeneous chemical reaction in terms of Dirichlet domains: (a) nucleus 
growth in terms of planigons; (b) nuclei appearance in terms of random mosaics; (c) superposition 

of two types of Dirichlet domains. 

first step (representing in this case a discrete time) reaction "propagates" onto 
this neighboring planigons. We will say that these planigons "have entered into 
reaction". We will consider the next surrounding as a reaction zone (in fig. 2(a) it is 
shown by dots). It consists of planigons that will enter into reaction at the next 
step, etc. 

(ii) The nuclei appearance is represented in terms of random mosaics [ 18], which 
means a spatial rather than purely temporal representation (fig. 2(b)). Each cell of 
this mosaic is the "rightful domain" of its nucleus and will be filled by it in the 
long run. The random mosaic as a whole is characterized by its averaged random 
cell which is always a hexagon [18]. Such a hexagon is sketched in the central part of 
fig. 2(c). The random mosaic remains invariable only if the number of nuclei is con- 
stant. The appearance of new nuclei in the course of a process leads to its rearrange- 
ment. As a result, the averaged hexagon cell, characterizing this mosaic, is 
decreased. 

(iii) For representing nuclei impingements these both types of Dirichlet tessella- 
tions are superimposed resulting in the following picture (fig. 2(c)): an ever decreas- 
ing random hexagon cell with an ever increasing nucleus, consisting of planigons, 
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inside it. Nuclei impingements are simulated by the "impingements" of the growing 
nucleus with edges of the averaged cell. The rate of cell decrease is determined by 
the intensity of nuclei formation, whereas the rate of nucleus growth is determined 
by the rate of reaction front evolution [15]. 

The peculiar feature of this model representation, as will be shown in the next 
section, is the linearity of unrestricted nucleus growth. The discussed sigmoid form 
of a(t) curves will be considered as a deviation from this linearity because of nuclei 
impingements. As a result we will not only get a deeper insight into its structure 
but also sketch the way of an adequate algebraic representation. 

2. Unrestr ic ted growth: Linearity 

The linearity of unrestricted growth may be shown in the most natural way using 
graph representation. That planigons, which have common edges with the growing 
figure, are added to it at each "step" (since the nearest neighbors are separated by 
the edges and not by the vertexes). For quadrangle planigons this is sketched in 
fig. 3. The corresponding graph is closed. It would be convenient to draw it on a 
cylinder; on the plane figure the right and left points are the same, which is shown 
by dotted lines. Since the evolution is concerned, it is natural to consider this graph 
as the oriented one. The corresponding nonoriented graph is homogeneous: p(a) 
= 4 for all vertexes (p(a) is the local degree of the vertex a). 

The graph vertexes fall into nonintersecting subsets with respect to their dis- 
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Fig. 3. Graph representation of nucleus growth (s is the step number). 
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tances from the center of the graph. Each of these subsets corresponds to the defi- 
nite step s; in fig. 3, corresponding vertexes are situated in the same horizontal 
"row".  It is convenient to count s off zero. 

The oriented graph has (apart from its center) three types of vertexes (p(a) and 
p* (a) are the numbers of incoming and outgoing edges, respectively): 

(a) p(a) = 3, p* (a) = 1; in fig. 3 they are shown by solid circles inside empty ones. 
There are 4 vertexes of this type at each step (in each horizontal "row").  So, 
they do not multiply. 

(b) p(b)  = 2, p*(b) = 2, and each vertex of this type is linked directly with two ver- 
texes of type (a), belonging to the previous "row"; in fig. 3 they are shown by 
empty circles. Only "rows" with even s contain vertexes of this type; in this case 
there are always 4 vertexes in a "row". So, they as well do not multiply and, in 
addition, oscillate. 

(c) p(c) = 2, p*(c) = 2, and each vertex of this type is linked directly with only 
one vertex of type (a); in fig. 3 they are shown by solid circles. Their number is 
increased by 8, but only at even s. 

Thus, four vertexes (four planigons) are added at each step, and the process 
under discussion may be described by a simple arithmetic progression with first 
term zero and difference d = 4: 

cT(s) = 4s. (1) 

This constant growth is due to the following mechanism. The number of vertexes 
of type (a) remains invariable at each step. In passing from even s to odd s, the num- 
ber of vertexes of type (c) increases by 8. But along with this 4 vertexes of type (b) 
are "switched out", compensating this surplus increase. In passing from odd s to 
even s, the number of vertexes of type (c) remains constant, but this is compensated 
by "switching on" 4 oscillating vertexes of type (b). 

For describing the restricted growth we will also need the following combinator- 
ial interpretation. A coordinate system may be naturally connected with the grow- 
ing figure (see the inset in fig. 3). This enables one to describe the growth process 
by the simple condition 

Ixl + ly l - -  s. (2) 

This condition is satisfied by (x, y) pairs consisting of the very first and very last 
terms of the set {0, 1 ,2 , . . . ,  s}, the second and penultimate terms, etc. For even s 
the number of different pairs ( x ~ y )  is ne = s / 2  -t- 1 (e.g. s = 4: (0,4); (1,3); (2,2)); 
for odd s no = (s + 1)/2 (e.g. s = 5: (0,5); (1,4); (2,3)). In both cases there is only one 
pair containing zero, for which only one sign alternation is possible. For other pairs 
there are four possibilities (e.g. (1,4); ( -1 ,4) ;  (1 , -4) ;  ( - 1 , - 4 ) ) .  Taking this into 

' 1)/2 1 2 r 4 ( s / 2 ) + 2  2 s + 2  and n o =  consideration, one gets n e = = 4 ( ( s+  - ) +  
= 2s. Further, x and y may be replaced. Except for the case of x = y (for even s), 
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this doubles the number of (x, y) pairs. And finally one arrives at (1) for both even 
and odd step numbers. 

In this way it is not difficult to check that the obtained result is true also for hexa- 
gonal planigons. At each step s the number of planigons in the reaction zone 
increases by ~,: 

a ( s )  = 

Or(S) = VS2/2 n t- 1 ,  

(3a) 

(3b) 

where the number of planigon edges ~, may be either 4 or 6, and s is counted off 
zero). These relationships describe the unrestricted growth. 

Keeping in mind that the modern formalism of heterogeneous chemical kinetics 
is the formalism of differential equations, note also the possibility of describing 
the process under discussion in terms of (second-order) difference equations: 

us = ASu0, (4a) 

~(s) = Us(2), (4b) 

where u0 = (c7(0), c7(0) + d),us = (S(s),~(s + 1)),A = [_0 ~]. 
Therefore, the rate of unrestricted growth is linear independently of the planigon 

sort. This feature of the suggested model is in agreement with experimental obser- 
vations: it is often mentioned in the literature on the subject (see, for instance, [4,6]) 
that at the beginning stages of a process the rate is linear. But in the context of the 
essential nonlinearity of chemical kinetics (succinctly described by Benson [19]) 
this leads us to the question in what particular way the restriction of growth deter- 
mines this nonlinearity. 

3. Restr icted growth: Singular points 

Now we are in a position to describe the sigmoid form of a(t) curve in terms of 
Dirichlet tessellations as a result of nuclei impingements. 

Within the suggested approach the impingements of a nucleus with neighboring 
nuclei are simulated as its impingements with the edges of the averaged hexagon 
cell. To start with, consider the case of a single straight line. No difficulties arise 
provided that this line is parallel to one of the axis of the growing nucleus (fig. 4(a)). 
Arguments similar to those in section 2 show that the increase of planigon number 
in the reaction zone is also described by second-order difference equations similar 
to (4a), but with d --- 2. The first term c7(0) in this case is different from zero and is 
determined by the boundary condition, i.e. by the number of planigons in the reac- 
tion zone at the very first step of restricted growth. The impingement of the nucleus 
with the straight line results in the appearance of a salient point on the c~(s) graph: 
linearity is reserved and the slope is halved. In fig. 4(a), parts A and B correspond 
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Fig. 4. The simplest examples of restricted growth: (a) the only restricted line; (b) two parallel 
restricted lines; (c) two perpendicular restricted lines. 

to unrestricted and restricted growth, respectively. Later we will see that actually 
the picture is a bit more involved. 

Similarly one may check that two parallel restricted lines provide the stationary 
growth with d = 0 (fig. 4(b)), whereas two perpendicular lines give the short inter- 
val of stationary growth (part B in fig. 4(c)) followed by the increase with d = 1 
(part C). This gives one the initial idea as to the way the c~(s) curve will be 
constructed. 

But if the restricted line is situated at an angle to the axis of the growing figure, 
one faces considerable difficulties. The most simple way to illustrate them is as 
follows. 

Until the growing nucleus is considered as a spherical one and the plane is 
believed to have no structure, the impingement of this nucleus with the edge of a 
hexagon cell means that there is a similar nucleus on the other side and at the same 
distance from this edge (fig. 5(a)). First these two nuclei impinge in the single point 
situated on the edge. Then the boundary between them propagates along the edge. 
Just in this sense we said that the growing nucleus impinges with the edge of the 
averaged cell. 

In terms of planigons the complete analogy may be kept only if the restricted 
edge is parallel to one of the axis of the growing figure (fig. 5(b)). In the general 
case, two adjacent growing nuclei impinge not along the straight line but along the 
stepwise boundary formed by the "chain" of planigons (fig. 5(c)). The number of 
these planigons is equal to the number of shortest distances between two centers of 
action in the M metric determined by a particular planigon sort. 

Figure 5(d) shows this boundary in our case. It separates planigons situated clo- 
ser to one of the centers of action (solid hatching) from planigons situated closer 
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Fig. 5. Transi t ion to the metr ic  determined by planigons; explanations are given in the text. 

to another center of action. In other words, this boundary is nothing else than the 
geometric locus consisting of planigons being equidistant from two centers of 
action. Each of these centers may be chosen as the origin of the coordinate system. 
Let it be the lower one in fig. 5(d). Note the following peculiarities of the considered 
boundary: 

- the number ofplanigons in the stepwise part (double hatching) is equal to 

n = min(lAxl, lAy[) + 1, (5) 

where Ax and Ay are the distances between centers of action along correspond- 
ing axes (shown by dots); 

- one of these planigons is surely situated on one of the axes, i.e. its coordinates 
are (0, l) or (l, 0) depending on min(JAx[, [Ay[) where l = r/2, r = lAx[ + Iz~Yl; 

- the stepwise part may be prolongated (ad infinitum) in both directions by 
straight parts, orientated along the second axis; so, the boundary as a whole is 
situated always in one half-plane; 

- the stepwise part may degenerate into a single planigon (situated on an axis); in 
this particular case, we get simply a straight boundary parallel to another axis; 

- to determine the boundary it is sufficient to point out two of its ends. 

Thus, the boundary under discussion can have the form shown in fig. 5(e) by sin- 
gle hatching and cannot have the form shown by dots. Six intersecting boundaries 
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make up the hexagon in the M metric (fig. 5(0 ). Such a hexagon restricts the nucleus 
growth. 

Considering the nucleus growth inside the averaged hexagon in the M metric, 
one may follow the formation of J(s) curve and the appearance of singular points 
on it. 

In fig. 5(f) the adjacent edges of a hexagon are hatched in a different manner, 
and, in addition, the vertexes are marked with asterisks. Without this the positions 
of vertexes are not evident (see fig. 6). Our hexagon is formed by the edges of all pos- 
sible types, each of them being the boundary of the corresponding Dirichlet 
domain. The top edge is straight, i.e. its stepwise part is degenerated. Then clock- 
wise: again the straight boundary, stepwise boundary prolonged in both directions, 
straight boundary, purely stepwise boundary, and stepwise boundary prolonged 
in only one direction. 

The nucleus growth inside the ever decreasing random hexagon is (roughly) 
sketched in fig. 6. The unrestricted growth is finished when the nearest hexagon 
edge is reached (fig. 6(a)). This determines the first discontinuity point on the c~(s) 
curve (polygonal line). In the general case there are 11 discontinuity points: 6 of 
them correspond to the impingements of growing nucleus with edges, and 5 to the 
"filling" of vertexes (i.e. angles between adjacent edges). The "filling" of the sixth 
(most distant) angle determines the end of a process, and the rate vanishes. Thus, in 
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Fig. 6. "Construction" of the rate-time curve within the suggested approach; explanations are given 
in the text. 
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the general case the c~(s) curve consists of 12 straight units. Note, that they do not 
intersect, as is shown in fig. 6 for units B, C, and D. (Part A corresponds to the 
induction period.) In particular cases some edges and vertexes may be reached 
simultaneously. Accordingly, the number of discontinuity points will be less than 
twelve. Figure 6 shows for simplicity a particular case. Linking the separate straight 
units (as is shown in fig. 6 for units D, E, and F), one gets the uninterrupted polygo- 
nal line c~(s). Finally, after being smoothed, it assumes the form shown in the inset. 
Note that the maximum in this interpretation is the "freak of chance" as well as 
other singular points (since the hexagon is random). 

As a result, reactions under discussion may be described in the general case by 
twelve difference equations similar to (4a), corresponding to twelve line segments 
of cT(s) curve (apart from the induction period): 

u~ ) = A ° u ~  ) , (6) 

where j is the consecutive number of a line segment. The step number cr in (6) is 
counted off the point next to the corresponding discontinuity point s~-l): 
c~ = s (/) - Sd 0-1) ÷ 1, i.e. cr = 0 for the first point of each line segment. The value 
j = 1 corresponds to the unrestricted growth. In this case d (1) in u00) = (c7~/)(0), 
c70) (0) + d (j)) is equal to the number of planigon edges, and ~(1)(0) = 0. All discon- 
tinuity points Sd U) are determined uniquely by the coordinates of hexagon vertexes. 
A t j  > 1 the first term ~7 (j) (0) is determined by appropriate boundary conditions; d o.) 
being dependent on which edges restrict the growth at the given stage (adjacent, 
opposite, etc.). 

4. Conclusions 

(1) The constant form ofa(t)  and cT(t) kinetic curves reflects the universal geome- 
trical regularities of nuclei formation, growth, and impingements that mask the 
basic chemical regularities. This is one of the main causes of failures in model discri- 
mination within the conventional geometric-probabilistic approach. 

(2) In terms of Dirichlet tessellations, the random nucleation and deterministic 
growth may be separated, and the sigrnoid form of the a(t) curve may be repre- 
sented as the deviation from linear unrestricted growth because of nuclei impinge- 
ments. 

(3) This enables one to indicate in the general case 11 singular points on a(t) 
and cT(t) curves, providing a more detailed analysis of experimental data. This num- 
ber of singular points is determined by the fact that the averaged cell of a random 
mosaic is always a hexagon. 

(4) The use of Dirichlet tessellations provides the "chemical insight" into the 
above geometrical universality, first of all due to a one-to-one correspondence 
between planigons and two-dimensional Fedorov groups (which is given in [17]). 
Each of 46 planigon sorts determines the corresponding metric on the plane, and in 
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this way the singular points may  be interpreted taking into account  a part icular  
crystal structure. The biographical inhomogenei ty is taken into considerat ion in 
terms o f  r andom mosaics. 

(5) The possibility outlined for describing a( t )  and ~(t) curves in terms of  differ- 
ence equations opens the way for stating the inverse kinetic problem in terms o f  dis- 
crete mathemat ics  with the aim to adapt  the conventional  formalism of  
heterogeneous chemical kinetics to a more  subtle simulation of  chemical regulari- 
ties. This point deserves separate discussion. 
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